Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 63

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Evaluation of the characteristics of metal nitrate aqueous solutions by microwave heating and the morphologies of synthesized metal oxide powders

Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori; Suzuki, Masahiro; Fukasawa, Tomonori*; Fukui, Kunihiro*

Funtai Kogakkai-Shi, 57(9), p.485 - 494, 2020/09

In the spent fuel reprocessing process, a mixed solution of uranyl nitrate and plutonium nitrate is converted into mixed oxide powder by the microwave heating. To evaluate the applicability to the industrial-scale and acquire the characteristics data of the microwave heating denitration of various metal nitrate aqueous solutions based on the knowledge studied in the development of laboratory-scale basic experiments, the microwave heating characteristics and metal oxide powder properties were investigated using cerium nitrate, cobalt nitrate and copper nitrate aqueous solutions. The progress rate of the denitration reaction was depended on the position, and the denitration reaction proceeded faster at the periphery than at the center. The morphologies of the synthesized products were porous and hard dry solid with cerium nitrate aqueous solution, foamed dry solid with cobalt nitrate aqueous solution, and powdery particles with copper nitrate aqueous solution. The denitration ratio and average particle size of the synthesized products increased in the order of the cerium nitrate aqueous solution, the cobalt nitrate aqueous solution, and the copper nitrate aqueous solution. The numerical simulations revealed that the periphery of the bottom surface of the metal nitrate aqueous solution was heated by microwaves. This results consistent with the experimental results in which the denitration reaction started from the periphery of the metal nitrate aqueous solution.

Journal Articles

Study on optimizing microwave heating denitration method and powder characteristics of uranium trioxide

Segawa, Tomoomi; Kawaguchi, Koichi; Kato, Yoshiyuki; Ishii, Katsunori; Suzuki, Masahiro; Fujita, Shunya*; Kobayashi, Shohei*; Abe, Yutaka*; Kaneko, Akiko*; Yuasa, Tomohisa*

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 9 Pages, 2019/05

A solution of plutonium nitrate and uranyl nitrate is converted into a mixed oxide by microwave heating denitration method. In the present study, for improving the efficiency of microwave heating and achieving high-temperature uniformity to produce homogeneous UO$$_{3}$$ powder, the microwave heating test of potassium chloride and uranyl nitrate solution, and numerical simulation analysis were conducted. The potassium chloride agar was adjusted to the dielectric loss, which is close to that of the uranyl nitrate solution and the optimum support table height was estimated to be 50 mm for denitration of the uranyl nitrate solution by microwave heating. The adiabator improved the efficiency of microwave heating denitration. Moreover, the powder yield was improved by using the adiabator owing to ease of scraping of the denitration product from the bottom of the denitration vessel.

Journal Articles

Mechanism of flashing phenomena induced by microwave heating

Fujita, Shunya*; Abe, Yutaka*; Kaneko, Akiko*; Yuasa, Tomohisa*; Segawa, Tomoomi; Yamada, Yoshikazu; Kato, Yoshiyuki; Ishii, Katsunori

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 8 Pages, 2018/07

Mixed uranium oxide and plutonium oxide powder is produced from uranyl nitrate and plutonium nitrate mixed solution by the microwave heating denitration method in the spent fuel reprocessing process. Since the microwave heating method is accompanied by a boiling phenomenon, it is necessary to fully grasp the operating conditions in order to avoid flashing and spilling in the mass production of denitrification technology for the future. In this research, it was confirmed that a potassium chloride aqueous solution as a simulant of uranyl nitrate aqueous solution with high dielectric loss cause loss of microwave at the solution surface as the dielectric loss increased with the increase of KCl concentration by experimental and electromagnetic field analysis, and revealed that the change in the heating condition affects the generation of flushing.

Journal Articles

Influence of the heating method on the particle characteristics of copper oxide powders synthesized from copper nitrate aqueous solutions

Segawa, Tomoomi; Fukasawa, Tomonori*; Huang, A.-N.*; Yamada, Yoshikazu; Suzuki, Masahiro; Fukui, Kunihiro*

Chemical Engineering Science, 153, p.108 - 116, 2016/10

 Times Cited Count:7 Percentile:26.49(Engineering, Chemical)

The influence of the heating method and rate on the morphology of CuO powders synthesized from Cu(NO$$_{3}$$)$$_{2}$$$$cdot$$3H$$_{2}$$O aqueous solutions by denitration was investigated. The median diameter of the obtained powder was found to decrease as the heating rate increased, independent of the heating method. The microwave heating method remarkably reduced the particle size and enhanced the irregularity and disorder of the shape and surface of the particles, which were found to be more widely distributed. In contrast, the microwave hybrid heating method yielded the most spherical particles with the smoothest surface. It was also found that this heating method sharpened the particle size distribution and had higher energy efficiency than the MW method. Numerical simulations also indicated a difference in the energy efficiency between these two methods. The simulations also revealed that the hybrid method could heat the whole reactor more uniformly with a lower microwave output.

Journal Articles

Nickel oxide powder synthesis from aqueous solution of nickel nitrate hexahydrate by a microwave denitration method

Segawa, Tomoomi; Kawaguchi, Koichi; Ishii, Katsunori; Suzuki, Masahiro; Arimitsu, Naoki*; Yoshida, Hideto*; Fukui, Kunihiro*

Advanced Powder Technology, 26(3), p.983 - 990, 2015/05

 Times Cited Count:8 Percentile:27.86(Engineering, Chemical)

Denitration of the aqueous solution of nickel nitrate hexahydrate (Ni(NO$$_{3}$$)$$_{2}$$$$cdot$$6H$$_{2}$$O) by a microwave heating method was investigated. Since Ni(NO$$_{3}$$)$$_{2}$$$$cdot$$6H$$_{2}$$O aqueous solution cannot be heated to over 300 $$^{circ}$$C by microwave irradiation owing to the low microwave absorptivity of its intermediate, NiO could not previously be obtained by microwave heating. We propose a novel NiO synthesis method that uses microwave heating without the risk of chemical contamination. A NiO powder reagent was added to the solution as a microwave acceptor. The denitration efficiency to NiO could be improved by an adiabator around the reactor to increase the temperature homogeneity in the reactor. Numerical simulations also reveal that the use of the adiabator results in remarkable changes in the electromagnetic field distribution in the reactor, temperature inhomogeneity decreases.

Journal Articles

Study on criteria of flushing phenomena in boiling transition by microwave heating

Yamaki, Tatsunori*; Abe, Yutaka*; Kaneko, Akiko*; Segawa, Tomoomi; Kawaguchi, Koichi; Yamada, Yoshikazu

Proceedings of the 22nd International Conference on Nuclear Engineering 2014 (ICONE-22), Vol.2A, p.V02AT09A011_1 - V02AT09A011_10, 2014/07

Uranium and plutonium mixed nitrate solution of the spent nuclear fuel is converted to uranium and plutonium mixed oxide (MOX) powder by the microwave heating direct denitration method in co-conversion process of the nuclear fuel cycle. The cylindrical denitration vessel can be expected to realize high-speed and high-capacity processing against traditional shallow vessel. However, flushing and overflow phenomena of solution have been confirmed in cylindrical vessel. Thus, It is required to be clarified that the generation condition and generation mechanism of flushing phenomena during microwave heating for the safety of the operating condition and the optimum design of the equipment. The craiteria of flushing phenomena and the relationship between the released power by evaporation and the absorbed power in water is confirmed by the experimental results from the microwave heating. It is found that the flow structure is changed and the outer surface is heated according to the increase of the concentration of KCl by the microwave heating experiment with using the KCl solution and KCl jelly as a simulated solution of the uranium and plutonium mixed nitrate solution.

Journal Articles

Mechanism of synthesis of metallic oxide powder from aqueous metallic nitrate solution by microwave denitration method

Fukui, Kunihiro*; Igawa, Yusuke*; Arimitsu, Naoki*; Suzuki, Masahiro; Segawa, Tomoomi; Fujii, Kanichi*; Yamamoto, Tetsuya*; Yoshida, Hideto*

Chemical Engineering Journal, 211-212, p.1 - 8, 2012/11

 Times Cited Count:13 Percentile:41.13(Engineering, Environmental)

The process for synthesizing metallic oxide powders by the microwave denitration method was investigated using hexahydrated nickel nitrate and trihydrated copper nitrate aqueous solutions, and the electrical field and the temperature distributions in the reactor were numerically simulated. Although CuO powder can be obtained from a trihydrated copper nitrate aqueous solution by the microwave denitration method, a hexahydrated nickel nitrate aqueous solution cannot be heated up to over 270 $$^{circ}$$C by microwave irradiation. It was also found that the reaction routes for microwave heating are the same as those for conventional external heating. This finding indicates that the success of producing oxide particles by microwave denitration depends not only on the microwave absorptivity of the intermediate and the metallic oxide, but also on the temperature difference.

Journal Articles

Environment purification technology using ionizing radiation

Kojima, Takuji

Hoshasen, 29(2), p.77 - 85, 2003/04

The radiation technologies for environment conservation are useful for purification of pollutants contained in flue gas or wastewater at very low concentration which is difficult to perform by conventional methods: removal using fine filter or charcoals and decomposition using catalysis at high temperature, etc. This paper reviews some examples of radiation application to removal of SO$$_2$$ and NO$$_x$$ from coal-combustion flue gases, decomposition of dioxin in gas emitted through the incinerator, decomposition of gaseous toxic volatile organic compounds in off gas, reuse of agricultural wastes.

JAEA Reports

Cold and semi-hot tests of 4-group partitioning process at NUCEF

Morita, Yasuji; Yamaguchi, Isoo; Fujiwara, Takeshi; Mizoguchi, Kenichi*; Kubota, Masumitsu*

JAERI-Research 2000-024, 55 Pages, 2000/06

JAERI-Research-2000-024.pdf:2.24MB

no abstracts in English

JAEA Reports

The second maintenance report at plutonium conversion development facility

; ; *; *; *; *; *

JNC TN8440 2000-013, 179 Pages, 2000/04

JNC-TN8440-2000-013.pdf:10.31MB

The plutonium conversion development facility (PCDF) has been operated for 17 years and about 12 tons plutonium-uranium mixed oxide (MOX) powder has been converted since operation started in 1983. The first maintenance program for aging of apparatus was carried out from 1993 to 1994. The calcination-reduction fumace, liquid waste evaporator had been dismantled and renewed. The second maintenance program was carried out form 1998 to 1999. The microwave ovens, powder blender, ventilation control panel and so on were dismantled and renewed. Large volume radioactive wastes were generated during this maintenance such as the furnace, the filter casings and glove boxes. These wastes were too large to be packed into the waste container and these wastes were polluted by MOX powder unfixed on these surface. SO cutting and packing operation for these wastes and recovery of MOX powder from them were carried out. In this report, the method of this cutting and packing operation, the radioactive exposure to the operators in this operation, the estimation of nuclear material quantity migrated to filters, the evaluation of re-floating factor of radioactive material, etc. were discussed.

JAEA Reports

Criticality safety evaluation in Tokai reprocessing plant

Shirai, Nobutoshi; ; ; Shirozu, Hidetomo; Sudo, Toshiyuki; Hayashi, Shinichiro;

JNC TN8410 2000-006, 116 Pages, 2000/04

JNC-TN8410-2000-006.pdf:2.77MB

Criticality limits for equipments in Tokai Reprocessing Plant which handle fissile material solution and are under shape and dimension control were reevaluated based on the guideline No.10 "Criticality safety of single unit" in the regulatory guide for reprocessing plant safety. This report presents criticality safety evaluation of each equipment as single unit. Criticality safety of multiple units in a cell or a room was also evaluated. The evaluated equipments were ones in dissolution, separation, purification, denitration, Pu product storage, and Pu conversion processes. As a result, it was reconfirmed that the equipments were safe enough from a view point of criticality safety of single unit and multiple units.

Journal Articles

The First test of 4-group partitioning process with real high-level liquid waste

Morita, Yasuji; Yamaguchi, Isoo; ; *; Kubota, Masumitsu

Proc. of the Int. Conf. on Future Nuclear Systems (GLOBAL'99)(CD-ROM), 8 Pages, 1999/00

no abstracts in English

JAEA Reports

Development of partitioning method; Confirmation of behavior of technetium in 4-group partitioning process by small scale experiment

Morita, Yasuji; Mizoguchi, Kenichi*; Yamaguchi, Isoo; ; Kubota, Masumitsu

JAERI-Research 98-046, 18 Pages, 1998/08

JAERI-Research-98-046.pdf:1.01MB

no abstracts in English

Journal Articles

Electron beam purification of flue gas

Tokunaga, Okihiro

Genshiryoku Shisutemu Nyusu, 9(1), 6 Pages, 1998/06

no abstracts in English

Journal Articles

Electron beam technology for purification of flue gas

Tokunaga, Okihiro

Environmental Applications of Ionizing Radiation, p.99 - 112, 1998/00

no abstracts in English

Journal Articles

Electron-beam technology for purification of flue gas

Tokunaga, Okihiro

Hikari Oyobi Kassei Kagakushu No Hanno Kogaku; Kagaku Kogaku Shimpojiumu Shirizu 62, p.21 - 27, 1998/00

no abstracts in English

Journal Articles

Electron beam treatment of lignite-burning flue gas with high concentrations of sulfur dioxide and water

Namba, Hideki; Hashimoto, Shoji; Tokunaga, Okihiro; *

Radiation Physics and Chemistry, 53(6), p.673 - 681, 1998/00

 Times Cited Count:11 Percentile:66.43(Chemistry, Physical)

no abstracts in English

Journal Articles

A Technique for desulfurization and denitration of exhaust gases using an electron beam

Tokunaga, Okihiro

Sci. Technol. Jpn., 16(64), p.47 - 50, 1998/00

no abstracts in English

JAEA Reports

Development of partitioning method; Prevention of colloid formation and removal of the colloid in the pre-treatment step for partitioning

Morita, Yasuji; Yamaguchi, Isoo; ; Mizoguchi, Kenichi*; Kubota, Masumitsu

JAERI-Research 97-046, 35 Pages, 1997/07

JAERI-Research-97-046.pdf:1.3MB

no abstracts in English

63 (Records 1-20 displayed on this page)